Forman curvature for directed networks
نویسندگان
چکیده
A goal in network science is the geometrical characterization of complex networks. In this direction, we have recently introduced the Forman’s discretization of Ricci curvature to the realm of undirected networks. Investigation of this edge-centric network measure, Forman curvature, in diverse model and real-world undirected networks revealed that the curvature measure captures several aspects of the organization of complex undirected networks. However, many important realworld networks are inherently directed in nature, and the definition of the Forman curvature for undirected networks is unsuitable for the analysis of such directed networks. Hence, we here extend the Forman curvature for undirected networks to the case of directed networks. The simple mathematical formula for the Forman curvature of a directed edge elegantly incorporates node weights, edge weights and edge direction. By applying the Forman curvature for directed networks to a variety of model and real-world directed networks, we show that the measure can be used to characterize the structure of complex directed networks. Furthermore, our results also hold in real directed networks which are weighted or spatial in nature. These results in combination with our previous results suggest that the Forman curvature can be readily employed to study the organization of both directed and undirected complex networks.
منابع مشابه
Comparing Three Notions of Discrete Ricci Curvature on Biological Networks
In the present work, we study the properties of biological networks by applying analogous notions of fundamental concepts in Riemannian geometry and optimal mass transport to discrete networks described by weighted graphs. Specifically, we employ possible generalizations of the notion of Ricci curvature on Riemannian manifold to discrete spaces in order to infer certain robustness properties of...
متن کاملForman curvature for complex networks
We adapt Forman’s discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, w...
متن کاملSystematic evaluation of a new combinatorial curvature for complex networks
We have recently introduced Forman’s discretization of Ricci curvature to the realm of complex networks. Forman curvature is an edge-based measure whose mathematical definition elegantly encapsulates the weights of nodes and edges in a complex network. In this contribution, we perform a comparative analysis of Forman curvature with other edge-based measures such as edge betweenness, embeddednes...
متن کاملCharacterizing complex networks with Forman-Ricci curvature and associated geometric flows
We introduce Forman-Ricci curvature and its corresponding flow as characteristics for complex networks attempting to extend the common approach of node-based network analysis by edge-based characteristics. Following a theoretical introduction and mathematical motivation, we apply the proposed network-analytic methods to static and dynamic complex networks and compare the results with establishe...
متن کاملAn efficient alternative to Ollivier-Ricci curvature based on the Jaccard metric
We study Ollivier-Ricci curvature, a discrete version of Ricci curvature, which has gained popularity over the past several years and has found applications in diverse fields. However, the Ollivier-Ricci curvature requires an optimal mass transport problem to be solved, which can be computationally expensive for large networks. In view of this, we propose two alternative measures of curvature t...
متن کامل